Learning From the Feynman Technique
They called Feynman the “Great Explainer.”
Richard Feynman (1918–1988), an author, graphic novel hero, intellectual, philosopher, physicist, and No Ordinary Genius is considered to be one of the most important physicists of all time.
- He pioneered an entire field: quantum electrodynamics (QED).
- In the 1940s, his invention of the Feynman Diagram helped bring much-needed visual clarification to the enigmatic behavior of subatomic particles.
- His work helping scientists understand the interaction of light and matter earned him a share of a Nobel Prize in 1965.
- His work has directly influenced the fields of nanotechnology, quantum computing, and particle physics.
- In 1986, his research and explanations were critical in helping to understand the cause of the space shuttle Challenger disaster.
In addition to his groundbreaking research, Feynman was brilliant, eloquent, and an exquisitely passionate thinker. In the world of science, he stands unequivocally for his ability to synthesize and explain complex scientific knowledge. His lectures are the stuff of legend — Albert Einstein attended Feynman’s first talk as a graduate student, and Bill Gates was so inspired by his pedagogy that he called Feynman, “the greatest teacher I never had.” Gates purchased the rights to his lectures and made them publicly available on a video portal nicknamed “Tuva” in honor of Feynman’s famous failed quest to reach the Russian region later in his life.
“I do think that making science cool to people when they’re young and therefore getting more people to go into it in an in-depth way, I think that’s very important right now,” Gates said, when announcingthe purchase.
Feynman’s lectures, many of which were delivered during his time at California Institute of Technology, were aimed at students who had no previous knowledge of particle physics or deep science. Taking the mystery out of complex scientific principles was Feynman’s forte. His lectures were underscored by a conviction and passion for science.
If Einstein created the ‘beautiful equation,’ then Feynman brought an unparalleled sense of beauty and romanticism previously absent in the world of scientific research. A vast majority of Feynman’s life was as vividly eccentric and illustrious as the unpredictable movements of the atomic particles that defined his life’s work. When he wasn’t in the throes of researching particle physics, he spent significant time dabbling in the arts, sketching, and even playing the bongo.
The Feynman Technique
Have you ever had a coworker who used business-speak, or had a teacher explain something with language that was difficult to understand?
You’re not alone. The Feynman technique for teaching and communication is a mental model (a breakdown of his personal thought process) to convey information using concise thoughts and simple language. This technique is derived from Feynman’s studying methods when he was a student at Princeton.
At Princeton, Feynman started to record and connect the things he did know with those he did not. In the end, Feynman had a comprehensive notebook of subjects that had been disassembled, translated, and recorded.
In James Gleick’s biography of Feynman, Genius: The Life and Science of Richard Feynman, he recalled his subject’s technique. “He opened a fresh notebook. On the title page he wrote: NOTEBOOK OF THINGS I DON’T KNOW ABOUT. For the first but not last time he reorganized his knowledge. He worked for weeks at disassembling each branch of physics, oiling the parts, and putting them back together, looking all the while for the raw edges and inconsistencies. He tried to find the essential kernels of each subject,” Gleick wrote.
You can use this model to quickly learn new concepts, shore up knowledge gaps you have (known as targeted learning), recall ideas you don’t want to forget, or to study more efficiently. Taking that concept further, you can use this technique to grapple with tough subject matter, which is one of the great barriers to learning.
Feynman’s technique is also useful for those who find writing a challenge. Feynman had an interesting relationship with writing. Instead of committing his knowledge to paper like many other scientific figures, he chose to use speech as the foundation for many of his published works. He dictated most of his books and memoirs, and his scientific papers were transcribed from his lectures.
“In order to talk to each other, we have to have words, and that’s all right. It’s a good idea to try to see the difference, and it’s a good idea to know when we are teaching the tools of science, such as words, and when we are teaching science itself,” Feynman said.
Feynman relied heavily on verbal and spoken communication, and when he turned to his cartoonish diagrams of highly scientific principles, for example, he could tap into ideas with shapes, squiggly lines, and drawings. It stripped away clunky language and allowed the power of verbal storytelling to take root.
Explaining the essentials of particle physics is extremely difficult. Before Feynman’s diagrams that earned him a Nobel Prize, there wasn’t a clear way to explain their meaning.
This is the first-ever published diagram by Feynman helped scientists track particle movements in illustrations and visual equations rather than verbose explanations. What seemed almost improbable at the time is now one of the greatest explanations of particle physics — the squiggly lines, diagrams, arrows, quarks, and cartoonish figures are now the established nomenclature and visual story that students, scientists, and readers will see when they learn about this field of science.
Essentially, the Feynman Technique is this:
1. Identify the subject
Write down everything you know about the topic. Each time you run into new sources of information, add them to the note.
2. Teach it to a child
If you can teach a concept to a child, you’re way ahead of the game.
Start with a blank note and write the topic or subject you want to teach. Then, below that topic, write everything you know about it. But, the trick is to write it plainly and simply — so that a child can understand what you’re talking about.
Doing this takes into consideration a few things:
Speaking in plain terms: Children don’t understand jargon or a lexicon of dense vocabulary. Science is full of complex terminology, which is the reason Feynman’s diagrams became so valuable. His charts illustrated things that other scientists delivered marathon lectures about.
When we speak without jargon, it frees us from hiding behind knowledge we don’t have. Big words and fluffy “business speak” cripples us from getting to the point and passing knowledge to others.
Brevity: The attention span of a child requires you to deliver concepts as if you were pitching a business idea during one short elevator ride. You better get the concept out before those doors open. Children also don’t have the ability — or mental capacity, to understand anything longer than that.
If you had difficulty putting thoughts into your note, that shows you have room to improve. This is also where the power of creativity can help you reach new heights in learning.
For Feynman, much of the pleasure in science was in this first step — unraveling his levels of understanding.
3. Identify your knowledge gaps
This is the point where the real learning happens. What are you missing? What don’t you know?
Highlighting knowledge gaps will help you when you collect and organize your notes into a cohesive story (which is the next step.) Now you can call upon your source material (lecture notes, ideas, etc.) when you run into questions about how much you do know about your topic.
If you don’t know something, hit the books. Go back to the source material and compile information that will help you fill in the cracks.
4. Organize + simplify + Tell a story
Start to tell your story. Piece together your notes and begin to spin a tale using concise explanations. Bring the most vital pieces of your knowledge about the topic together.
Practice reading your story out loud. Pretend to tell the story to a classroom of students. That way, you’ll hear where language stops being simple. Stumbles could indicate incomplete thoughts.
Use analogies and simple sentences to strengthen your understanding of the story.
This sentence, written by Feynman, encapsulates the power of this technique. What started as a question about our existence has been translated into a single sentence that can be understood by a middle school student.
“All things are made of atoms — little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another.”
Basically, Feynman says that if you know nothing about physics, the most essential scientific knowledge to understand is that everything is made up of atoms. In one simple sentence, Feynman conveys the foundational existence of our universe. It’s a master class not just for scientists, but for writers of any stripe. Get to the hypothesis in as few words as possible. Avoid clunky, verbose language.
Drawing on passions
Feynman was a believer in a multi-disciplinary approach to learning and found connections to his work in creative outlets like drawing and music. He never stopped asking questions — who, what, and why?
Einstein had his violin. Werner Heisenberg played the piano. Richard Feynman had bongos. And a passion for art. He was able to eloquently communicate, but he could also see the beauty in art, and the stories that art tells. It was as much a distraction as much as it was an unending source of inspiration he could connect to his work in particle physics.
“I wanted very much to learn to draw, for a reason that I kept to myself: I wanted to convey an emotion I have about the beauty of the world. It’s difficult to describe because it’s an emotion. … It’s a feeling of awe — of scientific awe — which I felt could be communicated through a drawing to someone who had also had that emotion. I could remind him, for a moment, of this feeling about the glories of the universe.” — Feynman discussing the intersection of art and science.
Making things stick forever
The next time you stare at an empty notebook page, think about turning that page into an opportunity.
As Feynman illustrates in his mental model, learning can be a lifelong pursuit. This technique is designed to help you study for exams and learn new subjects, but it can be easily adapted to pursue deep work. Dedicating a notebook to a place where your knowledge can grow and evolve your ideas and provide inspiration to continue following a path of ongoing learning critical to the fundamentals of deeper, meaningful work.
Today, researchers are still parsing through Thomas Edison’s notebooks and are constantly learning about how he cataloged his ideas and innovations. For Feynman, after he was done cataloging his knowledge with his technique, he had a comprehensive record of his knowledge that became a notebook he was incredibly proud of.
Armed with the Feynman technique and Evernote, anything is possible. How could you use this technique in your work? Share your story in the comments.
Written by Taylor Pipes on July 21, 2017. Originally published on the Evernote blog.
La física es como el sexo: seguro que nos da alguna compensación práctica, pero no es por eso que la hacemos". La frase, que podría ser de Woody Allen, pertenece a Richard Feynman, una de las grandes mentes de la física. A 100 años de su nacimiento, el legado de Feynman va mucho más allá de sus descubrimientos en las ciencias duras -que le valieron un Nobel en 1965- e incluye un método de creatividad y divulgación único, que sigue despertando admiración 30 años después de su muerte. No por nada se lo apodó "el gran explicador".
"Además de ser una de las diez mentes más brillantes de la física en toda la historia de la disciplina, fue una persona extremadamente versátil, obsesionada con que los conceptos más difíciles de entender llegaran a una comprensión masiva. El decía que "'si no podés explicar algo, no lo sabés', y uno no podría estar más de acuerdo con esa afirmación", cuenta a LA NACION el físico y especialista en big data Daniel Collico. A mediados de marzo, cuando falleció Stephen Hawking, Collico y sus colegas describieron en Twitter la estatura de Feynman con una metáfora futbolera: "Si Hawking es Cristiano Ronaldo, Feynman es Messi y Maradona sumados". Eficiencia y magia en su máxima expresión, aunque, agrega Collico, "tal vez no tuviera el manejo de relaciones públicas y capacidad de provocación que tuvo Hawking".
"Todos nos formamos con sus libros, y sus pensamientos además nos ayudan a pensar cómo puede ser un futuro lejano", cuenta el físico siberiano Andrei Vazhnov. Uno de los más notorios admiradores de la obra de Feynman es el fundador y dueño de Microsoft,Bill Gates, quien compró sus clases y las subió a una plataforma de acceso gratuito.
ADEMÁS
El gran explicador nació en Queens el 11 de mayo de 1918, en una familia de orígenes ruso y polaco. A los 15 años ya se lo consideraba un genio precoz, tuvo una vida de investigación muy prolífica y varios rasgos de excentricidad propios de las mentes de otra dimensión: se movía de una conferencia a otra en una vieja van que compró en 1975 a la que pintó con sus gráficos y fórmulas.
¿Por qué Feynman es una suerte de semidiós en el ambiente de los tecnólogos? Por varios motivos. Uno de ellos es que fue un pionero en el terreno de la electrodinámica cuántica, y su trabajo influenció en forma directa avances en la nanotecnología, la computación cuántica y la física de partículas. De hecho, en 1980, más de dos décadas antes de que se comenzaran a producir resultados prácticos, fue el primero en hipotetizar sobre una futura computadora cuántica, una de las tecnologías exponenciales más explosivas de 2018, con gigantes como Google, Microsoft e IBM ya identificándola como una de sus avenidas de desarrollo más promisorio y con aplicaciones concretas de mercado.
Además de su excepcionalidad como teórico -en su juventud se animaba a discutirles de igual a igual a leyendas como Albert Einstein o Niels Bohr-, Feynman fue una persona muy valiente. "Casi en el ocaso de su carrera le tiraron el problema complejísimo de entender qué había ocurrido con el desastre del Challenger. Entrevistó a todo el mundo como si fuera un consultor, lo hizo bajo presión militar, y descubrió que la falla estaba en unos anillos de sujeción ("O-rings") que no debían romperse a ciertas temperaturas, pero que se rompieron", explica Collico. "Este material no tiene resiliencia ante ciertas temperaturas", dijo con mucha calma a la junta investigadora con un vasito con hielo y un pedazo de material.
El método creativo
"Creo que hacer que la ciencia sea 'cool' para la gente joven, en sus años de aprendizaje, es algo muy importante en este tiempo; para promover que esa gente se sienta inspirada y se sumerja con mayor profundidad en el conocimiento", sostuvo Gates cuando anunció la compra de las conferencias Feynman, una serie de charlas que dio en el Caltech destinadas a personas sin conocimientos sofisticados de la física.
¿En qué consistía su método de creatividad y divulgación? A lo largo de su carrera el físico fue perfeccionando una serie de recursos pedagógicos que comenzó a aprender en sus años en Princeton. Estas eran algunas de sus herramientas:
# Prioridad a lo visual: "Sus famosos diagramas, elaborados en la década del 40, nos ayudaron a entender por primera vez las particularidades del mundo subatómico", cuenta Vazhnov. Feynman trabajaba con modelos mentales cuyos bloques consistían en diagramas (cuando se podía) y conceptos cortos.
# La vastedad de la ignorancia: En la biografía Genio: la vida y la ciencia de Richard Feynman, el autor James Gleick cuenta cómo el físico de Queens llevaba a todos lados un cuaderno cuyo título era: "Notas sobre todo aquello que no sé", donde identificaba territorios a atacar con curiosidad y ansias de aprender.
# Sin tecnicismos: al contrario de sus colegas, Feynman prefería que sus libros se nutrieran de los materiales de sus charlas ante auditorios no especializados y no de papers teóricos. Dedicaba poco tiempo -en términos relativos- a escribir piezas en lenguaje académico.
# Para los chicos: Si un concepto complejo podía ser contado de tal manera de que lo entienda un chico, más de la mitad de la batalla está ganada. Para eso trataba de eliminar por completo la jerga técnica, reducía los conceptos y acudía a gráficos y diagramas. Una vez que cumplía con los pasos de organizar el conocimiento y simplificarlo al máximo, se concentraba en "contar una historia" que optimizara las chances de que ese conocimiento perdurara.
# No temerle al absurdo: "La mecánica cuántica describe a la naturaleza como algo absurdo al sentido común. Pero concuerda plenamente con las pruebas experimentales. Por lo tanto, espero que ustedes puedan aceptar a la naturaleza tal y cómo es: absurda", sostuvo el Nobel.
# Los contornos del futuro: Vazhnov cuenta que en la década del 60 Feynman fue el primero en visualizar un "mundo mágico", posible tal vez en un futuro lejano, que más adelante popularizó Eric Drexler, ingeniero del MIT y pionero en nanotecnología. Drexler resalta que en el universo hay alrededor de 100 tipos de átomos. Los de nuestro cuerpo estaban en la época de los dinosaurios y desde antes de que se formara la tierra. "La reflexión de Drexler es que todos nuestros problemas importantes -de alimentación, vivienda, salud y hasta la muerte- podrían ser solucionados si pudiéramos manejar la materia a nivel molecular", dice Vazhnov. ¿Demasiada ciencia ficción? Tal vez en el límite. Como dijo Feynman en una de sus frases más recordadas: "Hay que tener la mente abierta, pero no tanto como para que se te caiga el cerebro".
No hay comentarios:
Publicar un comentario